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About Evaluation of Many-Center Molecular Integrals*
By

YvEs G. SMEYERS

Studies of truncated expansions of Slater s-orbitals, in terms of associated Laguerre func-
tions and spherical harmonics at another center, are carried out. The possibility of using such
an expansion to calculate many-center molecular integrals is considered. The procedure is
applied to solve three-center nuclear attraction integrals; it is shown that in some cases this
expansion can provide relatively good results.

On étudie des développements tronqués d’orbitales s de Slater, en série de fonctions
associées de Laguerre et d’harmoniques sphériques centrés en un autre point. On examine les
possibilités d’employer ce genre de développement dans le calcul des intégrales moléculaires
polycentriques. On applique le procédé & la résolution des intégrales tricentriques d’attraction
nucléaire et ’on montre que dans certains cas cette expansion peut conduire & des résultats
relativement bons.

Slater-s-Orbitale werden an einem anderen Zentrum in Reihen von Produkten aus Kugel-
funktionen und zugeordneten Laguerreschen Funktionen entwickelt. Untersucht wird die Kon-
vergenz der Reihen und ihre Eignung zur Berechnung von Mehrzentren-, insbesondere von
Dreizentren-Kernwechselwirkungs-Integralen. Die Ergebnisse sind zum Teil recht gut.

1. Introduction

Evaluation of many-center integrals remains one of the major difficulties in
the approximation of wavefunctions of polyatomic systems by the L.C.A.O.
methods. Hitherto, few papers [1, 2] have been concerned with this problem and
although much improvements have been made in last years by the use of big
computers [10, 13], an efficient general program is not yet available today.

A way to solve this problem is to expand the molecular wavefunction about a
single center. This procedure has produced satisfactory results in the studies on
very symmetrical molecules such as H, and AHy-type molecules [§8, 12]. However,
such functions are not able to represent properly the electronic charge distribu-
tion around the off-center nuclei. Furthermore they show a slow rate of conver-
gence and the introduction of high angular momentum terms is required.

The present paper deals in some way with both problems. In fact, one of the
simplest procedures to compute many-center molecular integrals is to reduce them
to a sum of one- or two-center integrals, easier to calculate, by expanding some
orbitals, occuring in them, in series of orthonormal functions:
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* A preliminary report of this work was read at the XII. meeting of the “Real Sociedad
Espafiola de Fisica y Quimica”, Salamanca, June 1965.
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Here A, B indicate the centers of the functions and ¢, j denote sets of quantum
numbers.

RUEDENBERG, in an early paper [11], used this property to justify theoretically
the well known Mulliken’s approximation for the calculation of many-center
integrals. Errsson [4] later estimated three-center integrals of repulsion in such
a way. Recently, PARR et al. [16] expanded a hydrogen 1s-orbital in spherical
harmonics, with zeta function and with Slater-orbital radial factors. In the second
expansion, these authors employed Slater-orbitals, centered off the nucleus, with
nonintegral principal quantum numbers and ceofficients determinated by mini-
mization of energy.

In this paper we try to study the expansion (1) and its possible use to evaluate
many-center integrals. In a first approach only Slater type orbitals (STO’s) of
s-symmetry are to be expanded; this procedure has been applied to compute
three-center integrals of nuclear attraction.

2. Choice of the Basis

As basis for the expansion (1) we have employed an orthonormal set proposed
by SEULL and Lowpin [14], which is a complete orthonormal system :

A= [m} TVl =) Qarg) - L (2ery) - e - VP (0,) (2)
where LZH2 ) (22r,) are the associated Laguerre polynomials of order (21 -+ 2),
YP (0, ) are the ordinary spherical harmonics and ¢ takes different values for
every =, I, m combination.

This set is entirely discrete and has the advantage of owning a common single
exponent, which allows the yp; to be written as a linear combination of @i
Slater orbitals, centered at the same point:

n
1B = 2  CMOpgim .
E=1+1
The Slater normalized orbitals are defined as follows:
(22)k + Yy 51

PBkim = W rp €78 Y%n (9, Cp) . (3)

From Eq. (2) and the definition of the Slater orbitals we have deduced the following
formula for the coefficients ¢f¥™:
ey VAl ) Ve -1-1)! V(2k)!

nlm __ [
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which does not depend on the number m. On the other hand, since in this paper
®4j is a s-orbital, there is no term in the series with m % 0, because the correspond-
ing expansion coefficients [@4; yp: d7v in Eq. (1) vanish.

3. Caleulation of the Expansion Coefficients
Calculation of the remaining expansion coefficients [¢a; yp: dT can now be
carried out by means of any of the common procedures to calculate overlap
integrals between Slater orbitals. Using elliptical coordinates these integrals can
readily be written in terms of the auxiliary integrals 4, and B, [9]. Because of the



454 Yves G. SMEYERS:

high number of integrals of that type, it seems convenient to systemize that
calculation. Therefore, we have deduced after LortrUS [6] a general equation,
where the overlap integrals are expressed as functions of 4, and By, and of the
quantum numbers of the corresponding orbitals:

R\n;+E+1
J #0 pmo o = 3, 3 (B gt e -yt

i T
’ Z Z Oc(zll? 2 Z (— 1)dAn¢+Ic-—cAdBc+d-
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In this expression one should retain only those terms where a -~ b is an even
number. N; and Ny are the normalization constants of the radial parts of the
corresponding STO’s, R is the internuclear distance between their centers and
C® a factor depending essentially on the number I, which has the form:
a+d
o _ @l-—a-bl@+bl (-1 *2

Oub-—‘ 0
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For the computation of the B, integrals we have chosen a development
advanced by MILLER et al. [7], since the usual recurrence formula in some cases
yields large errors.

4. Properties of the Expansion
If ¢4y is a normalized wavefunction, we have:

1= iz:(f(ij XBi dr>2 . 4)

Since the expansion must perforce be limited in practice, Eq. (4) can be used to
provide insight into the rate of convergence obtained for a given number N of
terms; thus we define:

bl 2
SN = ; <J¢ij3¢ d‘l,') .

In the same way, inside each vectorial subspace with same number I we can define
a Seo; and a Syy, since each subset of Laguerre functions of same order is by itself
a complete orthonormal system in such a subspace. The value of that Sey,
depending only upon the g4; functions and the internuclear distance R, can be
computed by exact methods.

Now it must be noted that the z exponent in the expansion (1) is an arbitrary
parameter that we may choose in such a manner that the Sy will be maximum.
Moreover, there is no reason for this exponent to be the same in every subset of
Laguerre functions, and we may thus assume different z; values for each Sy; to be
maximum, that is for Sy; to tend toward Su;.

An alternative way to check the convergence of the expansion would be the
calculation of the multipole moments, which as is known are zero for a s-function.
This way seems of interest because there are several approximations for many-
center integrals [3, 6] based on preserving such moments. Next, nuclear attraction
three-center integrals are calculated using the expansion procedure. The values of
these will give a good measurement of the electronic density and can be used to
verify the expansion properties at several space points.
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5. Applications

We have applied this method to the solution of nuclear attraction three-center

integrals, which have the general form:

@45 @or dT
J e

where @ 4; and @pp are two STO’s with centers at 4 and B, r¢ is the distance from
the electron to a third point €. On substituting the B-centered expansion of
orthonormal functions for @, that integral takes the form of a summation of

two-center nuclear attraction integrals:
J‘Pm (-1 dr — z J Q47 1Bi dr (pBi;LxB’L dr . (5)

ro

Now we can write, as done above for the expansion coefficients, these two-center
integrals as linear combinations of known integrals of Slater-orbitals. Because of
substituting a Neumann’s expansion for the r.1 operator, the nuclear attraction
terms then have as factors the Legendre polynomials P; (cos y), where y is the

angle between the vectors BC’ and BA and ! the angular quantum number of the
corresponding yz;.

The calculation process has been programmed for the IBM 7070 computer of the C.C.E.
of the C.8.1.C., in Madrid. The program has no other limitations than the numerical ones. The
number of terms is in practice limited only by the accumulation of errors. Therefore, we think
it would be interesting to rewrite this program in double precision, so that a larger number of
terms could be retained.

6. Results and Discussion

In Tab. 1 are listed the values of Sy; and Sy computed, as described above,
expanding a 1s-orbital ¢4; with charge equal to unity and using 8—/ Laguerre
polynomials of order 2I+2 for =0, 1, ..., 7. All the calculations were performed
for four values of the distance R (0.7; 1.4; 2.0 and 2.5 a.u.). A change in the scale
factor can provide a variation of the charge. It is seen that the convergence is
more rapid for smaller R values, as to be expected. In the same table are given the
best values of z;. Also in Tab. 1 are presented the values of Soo; calculated by an
exact method, the BARNETT-COULSON expansion. As it is seen, the convergence
inside every subspace shows the same trend.

The different contributions to the dipole moment of a B-centered expansion as
functions of the quantity I, including that of an equal positive charge placed at 4,
are tabulated in Tab. 2. As it is seen, the results approach asymptotically the
correct value zero, except for a small residual error which appears clearly when
R = 0.7 a.u. This error is due to the incompleteness of the basis used for the radial
part. These results are comparable, however, with those obtained by PArr et al.
[16] using the BARNETT-COULSON expansion and, indeed, much better than those
produced by the same authors using the Slater expansion with nonintegral princi-
pal quantum numbers. This fact is due to their having employed a single orbital
(with one exception) for the radial part multiplying a spherical harmonic.

In Tab. 3 and 4 are gathered some nuclear attraction many-center integrals of
Slater 1s-orbitals with charge equal to unity and distances R = AB = CUB,
computed by the method described, with the z; parameters given in Tab. 1.

Tabulated in column 2 of Tab. 3 are evaluations of integrals where the attrac-
tive center C coincides with the center A of the ¢ 4; orbital. These integrals, in fact
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Table 2. Dipole moments, in Debye units, as functions of
distance R, for an unnormalized truncated expansion

—

R=0.7au. R=14au. R =2.0a.n. R=25au.

0 1.77903 3.5571 5.0764 6.3316
1 0.16596 0.9948 2.2100 3.4425
2 0.01354 0.2152 0.7321 1.4432
3 0.00189 0.0508 0.2365 0.5661
4 0.00064 0.0152 0.0839 0.2334
5 0.00044 0.0064 0.0352 0.1070
6 0.00038 0.0036 0.0173 0.0559
7 0.00036 -0.0026 0.0104 0.0348

1is the highest order of the Legendre polynomial retained.

Table 3. Nuclear two-center attraction integrals, in atomic units, as functions of

distance R
R By this Exact Ratio between
in a. u. method value both results Sy
0.7 0.84351 0.84419 0.99919 0.99997
14 0.58998 0.59183 0.99687 0.99969
2.0 0.40345 0.40600 0.99372 0.99866

2.5 0.28453 0.28730 0.99036 0.99649

Table 5. Values of the last expansion term retained, as functions
of the distances A B and CB, in atomic units for linear

arrangement
CB[AB AB=0.7 AB=14 AB =20 AB=25
0.5 0.25 10—+ 0.13 103 0.26 102 0.38 10-3
1.0 0.14 102 0.53 102 0.79 103 0.87 10-3
1.5 0.10 103 0.27 103 0.31 103 0.27 10-3

2.0 0.33 104 0.71 10 0.65 10 0.49 104
In thiscasel = 8and N = 1.

two-center integrals, can easily be calculated by classical methods and their
correct values are given in column 3. Tt seems interesting to list in column 4 the
ratios between both results and in column 5 the corresponding Sy values. It is seen
that, in this case, the convergence of the series (5) is not so good as to be expected.
One may confirm then that the representation of the electronic density given by
the expansion is less satisfactory in the region of point A (the cusp) than in the
remaining space.

In Tab. 4 are given the values of three-center integrals for four significant posi-
tions of center C (L ABC=y=190°; 109° 28"; 120° and 180°). Since exact values
of these integrals are lacking, we have computed their values following two ways:
the @4; expansion about point B and A4-centered expansion of @gs. As a matter
of fact, both expansions must tend to the same values. Let us suppose that both
results are correct when they agree. A very good agreement, better than to be
expected, is shown in Tab. 4.

Theoret, chim. Acta (Berl.) Vol. 4 32
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To discuss these results, let us first look on the three-center linear integrals,
centered at B, where y = 180°. Because P; (cos y) multiplies the nuclear attractive
terms, according to the properties of the Legendre polynomials the expansion (5)
becomes an alternant series*. The maximum error will be given approximately by
the last term. The corresponding values, for four distances 4B = OB, are listed
in the second row of Tab. 5. Now, when y = 90°, the expansion (5) is also an
alternant series, but its convergence must be more rapid because P;(0) decreases
with I. On the other hand, for y = 0° P; will always be -+ 1, and therefore the
convergence will be slowest, which is in agreement with the results of Tab. 3.

From the results on the linear arrangement listed in Tab. 5, it may be seen that
the convergence will be better when AB s CB, particulary when CB > AB. This
fact points out that the terms with high angular momentum are more significant
at the points lying on a sphere centered around B and passing through 4, where
indeed the maximum electronic density is to be met. This remark also agrees with
the results of Tab. 3.

Expansions of Slater 2s-orbitals were also performed in the same way. These
show a similar behavior and no more difficulties than those of 1s-type.

7. Conelusions

It is seen that the convergence of an expansion of a Slater s-orbital in terms of
Laguerre functions and spherical harmonics about an off-center is satisfactory
though slow. Besides, this expansion seems to be almost as good as one in terms of
zeta functions (BARNETT-CouLson). These results confirm also that single-center
calculations on molecules such as methane must include higher harmonies in order
to obtain an approximately correct electron density in the region of the protons.

Furthermore, it is seen that such an expansion yields better electronic densities
at certain space points. We may now conclude that, when one wants to evaluate
the potential at those points (nuclear attraction integrals) or the repulsion due to
an electronic cloud centered around them (two-electron coulomb integrals) this
expansion may be used successfully in the evaluation of the three-center integrals.
In the cases of three- and four-center exchange integrals the latter conclusion
seems to be less obvious. It may be noted that it seems less difficult to calculate by
this treatement precisely the most usual integrals in structural problems, where
either 90° < y < 180° or 4B+ OB. In the same way, this explains partly also
the relative success of the MULLIKEN’s approximation in these cases, as we have
stated elsewhere [15].

* We have verified that, in our case, the factors multiplying the P; are always > 0. This
fact agrees with the results of PARR et al. [16], and can be explained as follows: Let us retain in
our expansion the first Laguerre function of each order only, and optimize again the z; para-
meters. Since R is not too large, our new expansion may be expected to remain approximately
a good one. Then the factors multiplying the P: become a product of two integrals of Slater-
orbitals. Since @4; and @sn are s-orbitals and yz; now has no spherical node, it may be easily
seen that both integrals must be positive.
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